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Abstract
It is shown explicitly that the fermion particle density �(r) in d dimensions
for isotropic harmonic confinement and odd d is determined by the one-
dimensional wavefunctions of the highest occupied state. Knowledge of the
Dirac density matrices for d = 1 and 2 suffices to completely determine the
general d-dimensional matrices.

PACS numbers: 05.30.Fk, 71.10.Ca, 31.15.Ew, 03.75.Fi

Our groups have been working independently on the properties of a fermion assembly of
particles subject to isotropic harmonic confinement [1–3] in d dimensions. Folklore has it
that the properties of large fermion assemblies are dominated by eigenfunctions of the highest
occupied level.

The purpose of this paper is to use the results of [1–3] to give an explicit proof, for
harmonic confinement of independent fermions in d dimensions, of the above assertion. In
fact, it turns out that given solutions of the d = 1 and 2 models of harmonic forces, one can
generate solutions for arbitrary d.

As Lawes and March in [4] summarize, the corresponding Dirac density matrix of N + 1
occupied lowest states in one dimension reads

�
(1)
N (x, x ′) = 1

2
ψN(x)ψN(x ′) +

1

2(x − x ′)
[ψN(x)ψ ′

N(x ′) − ψN(x ′)ψ ′
N(x)] (1)
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then for the density �
(1)
N (x) one has

�
(1)

N (x) = �
(1)

N (x, x ′)|x′=x = 1

2
[ψ ′

N(x)]2 +

(
N − x2

2

)
ψ2

N(x). (2)

Here ψN(x) stands for the normalized harmonic oscillator function with N nodes, N =
0, 1, . . . . Below we clearly distinguish the Dirac density matrix for N + 1 occupied lowest
levels with n = 0, 1, . . . , N and that of the shell with a given energy. Thus we have denoted
the complete Dirac density matrix in one dimension for maximal N filled shells as �

(1)

N (x, x ′).
The superscript and subscript indicate the dimension d of the configuration space and the value
of the Fermi energy EF = N + d/2 respectively.

These results (1) and (2) go back to Husimi [5]. Relation (1) was already known
in the nineteenth century as the Christoffel–Darboux formula for the classical orthogonal
polynomials (e.g., [6]).

Introducing the differential operator [1]

L(x, x ′) = 1

x − x ′

(
∂

∂x ′ − ∂

∂x

)
(3)

one can rewrite equation (1) as the action of the operator L on products of the oscillator
functions at the Fermi level:

�
(1)
N (x, x ′) = 1

2 (L(x, x ′) + 1)ψN(x)ψN(x ′). (4)

In fact, it turns out that given solutions of the d = 1 and 2 models of harmonic forces,
one can generate solutions for arbitrary dimensionality d. The d-dimensional Dirac density
matrix for the (N)th closed shell will be written below as γ

(d)
N (r, r′) and the coordinates to be

used (see also [7]) are defined by

x = |r + r′| + |r − r′|
2

� 0 y = |r + r′| − |r − r′|
2

� 0. (5)

These variables allow one to discard symbols of the absolute value and dot product in the
following equalities:

|r + r′| = x + y |r − r′| = x − y

|r|2 + |r′|2 = x2 + y2 (r · r′) = xy.
(6)

It will be valuable below to supplement the operator L in equation (3) with a further
operator M. This we define as the even part of L(x, y) with respect to its second argument by

M(x, y) = 1

2
(L(x, y) + L(x,−y)) = 1

x2 − y2

(
y

∂

∂y
− x

∂

∂x

)
. (7)

By direct operation of M(x, y) on �
(1)

N (x, y), and using the explicit forms of �
(3)

N (x, y) for
small values of the number of shells N, we find after some calculation

�
(3)
N (x, y) = 1

π
�

(1)
N (x, y) (8)

for N = 0 and 1,

�
(3)

3 (x, y) = 1

π

(
�

(1)

3 (x, y) + �
(1)

1 (x, y)
)

(9)

and

�
(3)

4 (x, y) = 1

π

(
�

(1)

4 (x, y) + �
(1)

2 (x, y)
)
. (10)

We infer from the above a much more general result,

�
(d)
N (x, y) = 1

2π
(M(x, y) + 1)�

(d−2)
N (x, y). (11)



Properties of a fermion assembly 4759

Equations (8)–(10), culminating in equation (11), to which we shall return below, represent the
central findings of the present letter, showing that for odd d the three-dimensional Dirac matrix,
for instance, is determined for an arbitrary number of closed shells by the one-dimensional
form �

(1)
N (x, y). In fact, since equation (11) applies to general d, all the Dirac matrices

�
(d)

N (x, y) for odd d are determined through equation (1) by the wavefunction ψN(x). This
establishes the folklore referred to in the first paragraph of this letter for odd values of the
dimensionality d.

Let us next comment on the dependence of γ
(3)

N (r, r′),

γ
(3)
N (r, r′) =

∑
n1+n2+n3=N

ψn1n2n3(r)ψn1n2n3(r
′) = 1

2π
(M(x, y) + 1)ψN(x)ψN(y) (12)

on its spatial variables. For a general one-particle d = 3 Hamiltonian the Dirac density matrix
depends on two vectors r and r′. For a central field Hamiltonian due to rotational symmetry
one can introduce the Dirac density matrix for a subshell of fixed angular momentum, which
depends not on six values of components of vectors r and r′ but on three scalar variables
r = |r|, r ′ = |r′| and |r − r′| only. For the isotropic harmonic oscillator with d = 3,
due to additional SU(3) symmetry, the Dirac density matrix of closed shells with the same
energy and number of variables can be reduced to the two scalar combinations x, y defined in
equation (5). This property holds true for any d � 2. It is worth noting that the free particle
density matrix of the shell depends on one variable |r − r′| only. Equation (11) implies that
one need only calculate two basic density matrices for d = 1 and 2, and subsequently to
differentiate them. Thus for d = 3, one has

�
(3)
N (r, r′) =

N∑
n=0

γ
(3)
N (r, r′) = 1

2π
(M(x, y) + 1)

1

2
(L(x, y) + 1)ψ

(1)
N (x)ψ

(1)
N (y). (13)

It should be added here, at this point, that proof of the above formulae [2] can
be given by using recurrence relations between the one-dimensional harmonic oscillator
wavefunctions and the time-dependent Green function for the one-dimensional oscillator,
known to mathematicians as the bilinear generating function for Hermite polynomials [6]. We
may write the diagonal (x = x ′) form of this relation as

F (1)(x, x, t) =
N∑

n=0

tnγ (1)
n (x, x) =

(mω

πh̄

)1/2 1√
1 − t2

exp

(
−mω

h̄
x2 1 − t

1 + t

)
(14)

where we have, for illustrative purposes, retained units such that

V = 1
2mω2x2. (15)

Generalizing to d dimensions, and for r′ �= r, one finds for the d-dimensional analogue of
equation (14)

∞∑
m=0

tmγ (d)
m (r, r′) =

(mω

πh̄

)d/2 1

(1 − t2)d/2
exp

(
mω

2h̄

4(r · r′)t − (r2 + r ′2)(1 + t2)

1 − t2

)
. (16)

On the diagonal, and for the illustrative case d = 3, this then gives

∞∑
m=0

tmγ (3)
m (r, r) =

(mω

πh̄

)3/2 1

(1 − t2)3/2
exp

(
−mω

h̄
r2 1 − t

1 + t

)
. (17)
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To make direct contact with the result of Sondheimer and Wilson [8] for the canonical density
matrix C(r, r′, β), one simply replaces t by exp(−βh̄ω), which leads to

C(r, r′, β) =
(

mω

2πh̄ sinh(βh̄ω)

)d/2

exp

{
−mω

h̄

[
(r2 + r ′2) tanh

(
βh̄ω

2

)

+
(r − r′)2

4
coth

(
βh̄ω

2

)]}
. (18)

Due to the properties of the x, y variables in equation (6), the right-hand side of
equation (16) takes the form of the one-dimensional generating function in the scalar variables
x, y in equation (5) and the coordinate-independent factor (1 − t2)−(d−1)/2. For d = 3 this
factor is a geometric series

1

1 − t2
=

∞∑
k=0

t2k (19)

that gives the sum over states with the fixed parity

γ
(3)

N (x, y) =
[N/2]∑
k=0

ψN−2k(x)ψN−2k(y) (20)

which leads to relation (13). Here [N/2] denotes the integer part. Similar considerations prove
the recurrence relation (11).

For d = 2 we need to expand 1/
√

1 − t2 instead of 1/(1 − t2) in equation (16). So for
γ

(2)

N (x, y) we have the following sum:

γ
(2)
N (x, y) =

[(N+1)/2]∑
k=0

(k − 1)!!

k!!
ψN−2k(x)ψN−2k(y). (21)

Here the double factorial symbol k!! = k(k − 2)(k − 4)· · · denotes the product of all positive
integers of the same parity as k up to k. For two dimensions, in fact, we can write the shell
density matrix γ

(2)
N in a compact differential form. Using polar coordinates, the shell density

matrix has the form

γ
(2)

N (r, r′) = 1

2π
√

rr ′
∑

m+2n=N, m�0, n�0

εmχnm(r)χnm(r ′) cos(m(ϑ)) (22)

where

χnm(r) =
(

2n!

(m + n)!

)1/2

rm+ 1
2 e−r2/2Lm

n (r2) (23)

and εm = 1 for m = 0, εm = 2 for m �= 0. Transforming to coordinates (x, y) then yields

γ
(2)

N (r, r′) = γ
(2)

N (x, y) = 1

2π
√

xy

∑
m+2n=N+1

εmχnm(x)χnm(y). (24)

Using standard boson ladder operators in rectangular coordinates (u1, u2) and (u′
1, u

′
2)[

aα, a
†
β

] = δαβ [aα, aβ] = 0 α, β = 1, 2

we get

γ
(2)
N (u1, u2; u′

1, u
′
2) = 1

N!

(
a
†
1a

′†
1 + a

†
2a

′†
2

)N |00〉|0′0′〉
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and focus our attention on a further operator A = a
†
1a

′†
1 + a

†
2a

′†
2 which, after some calculation,

we can write in coordinates (x, y) as

A(x, y) = 1

2

(
xy − y

(
1 +

1

x2 − y2

)
∂

∂x
− x

(
1 − 1

x2 − y2

)
∂

∂y
+

∂2

∂x ∂y

)
. (25)

This allows us to write

γ
(2)

N (u1, u2; u′
1, u

′
2) = γ

(2)

N (x, y) = 1

N!
A(x, y)N |0x0y〉 (26)

where

|0x0y〉 = 1

π
exp

(
−1

2
(x2 + y2)

)
. (27)

It is straightforward to check, say for the first four shells, that equation (26) readily reproduces
results directly calculable from known harmonic oscillator wavefunctions. Finally, we note
that equation (26) may be formally summed over shells to give the density �

(2)
N as

�
(2)
N (r, r′) =

N∑
n=0

γ (2)
n (r, r′) =

N∑
n=0

1

n!
A(x, y)n|0x0y〉

= exp(A)
(N + 1, A)

(N + 1)
|0x0y〉 = exp(A)

(N + 1, A)

(N + 1)
�

(2)
0 (x, y) (28)

where (a, x) denotes an incomplete gamma function [9].
We want to conclude by drawing attention to major simplifications which follow from the

recent study of Howard et al [3]. We illustrate by taking the cases of two closed shells. These
researchers use variables

ξ = r + r′

2
η = r − r′

2
(29)

which embrace the (scalar) variables x and y in equation (5). In terms of the variables (29)
�

(1)

2 (ξ, η) is given in equation (3.9) of [3], and in their equation (5.5) for �
(d)

2 (ξ, η) for d = 4.
They are precisely the same functions of |ξ| and |η|, the only difference being a d-dependent
constant multiplying factor. This means that odd and even values of d are intimately related,
in addition to equation (11) relating odd (even) d values. This suggests to us that, in
equation (11) to be quite specific, �

(d−2)
N (x, y) is an eigenfunction of the operator M(x, y),

with a d-dependent (also N-dependent) eigenvalue, but we have not established this.
In summary, the complete Dirac density matrices of the d-dimensional harmonic oscillator

can be characterized solely by d = 1 and d = 2 matrices, through equation (11). But further,
the matrices for odd values of d can be generated by the Fermi level wavefunctions for
d = 1. In this model of isotropic harmonic confinement, the folklore mentioned in the first
paragraph of the body of the letter has therefore been shown to be exact for such values of the
dimensionality d.
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